Metamath Proof Explorer


Theorem brparts2

Description: Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021)

Ref Expression
Assertion brparts2 A V R W R Parts A R Disjs dom R / R = A

Proof

Step Hyp Ref Expression
1 brparts A V R Parts A R Disjs R DomainQss A
2 1 adantr A V R W R Parts A R Disjs R DomainQss A
3 brdmqss A V R W R DomainQss A dom R / R = A
4 3 anbi2d A V R W R Disjs R DomainQss A R Disjs dom R / R = A
5 2 4 bitrd A V R W R Parts A R Disjs dom R / R = A