Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partitions: disjoints on domain quotients
brparts2
Next ⟩
brpartspart
Metamath Proof Explorer
Ascii
Unicode
Theorem
brparts2
Description:
Binary partitions relation.
(Contributed by
Peter Mazsa
, 30-Dec-2021)
Ref
Expression
Assertion
brparts2
⊢
A
∈
V
∧
R
∈
W
→
R
Parts
A
↔
R
∈
Disjs
∧
dom
⁡
R
/
R
=
A
Proof
Step
Hyp
Ref
Expression
1
brparts
⊢
A
∈
V
→
R
Parts
A
↔
R
∈
Disjs
∧
R
DomainQss
A
2
1
adantr
⊢
A
∈
V
∧
R
∈
W
→
R
Parts
A
↔
R
∈
Disjs
∧
R
DomainQss
A
3
brdmqss
⊢
A
∈
V
∧
R
∈
W
→
R
DomainQss
A
↔
dom
⁡
R
/
R
=
A
4
3
anbi2d
⊢
A
∈
V
∧
R
∈
W
→
R
∈
Disjs
∧
R
DomainQss
A
↔
R
∈
Disjs
∧
dom
⁡
R
/
R
=
A
5
2
4
bitrd
⊢
A
∈
V
∧
R
∈
W
→
R
Parts
A
↔
R
∈
Disjs
∧
dom
⁡
R
/
R
=
A