Metamath Proof Explorer


Theorem cnvepresdmqs

Description: The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion cnvepresdmqs E -1 A DomainQs A ¬ A

Proof

Step Hyp Ref Expression
1 df-dmqs E -1 A DomainQs A dom E -1 A / E -1 A = A
2 n0el3 ¬ A dom E -1 A / E -1 A = A
3 1 2 bitr4i E -1 A DomainQs A ¬ A