Metamath Proof Explorer


Theorem cnvepresdmqs

Description: The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion cnvepresdmqs ( ( E ↾ 𝐴 ) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 df-dmqs ( ( E ↾ 𝐴 ) DomainQs 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )
2 n0el3 ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )
3 1 2 bitr4i ( ( E ↾ 𝐴 ) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴 )