Metamath Proof Explorer


Theorem cnvepresdmqs

Description: The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion cnvepresdmqs
|- ( ( `' _E |` A ) DomainQs A <-> -. (/) e. A )

Proof

Step Hyp Ref Expression
1 df-dmqs
 |-  ( ( `' _E |` A ) DomainQs A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )
2 n0el3
 |-  ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )
3 1 2 bitr4i
 |-  ( ( `' _E |` A ) DomainQs A <-> -. (/) e. A )