Metamath Proof Explorer


Theorem n0el3

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)

Ref Expression
Assertion n0el3
|- ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )

Proof

Step Hyp Ref Expression
1 n0elim
 |-  ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )
2 n0eldmqseq
 |-  ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A -> -. (/) e. A )
3 1 2 impbii
 |-  ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )