Metamath Proof Explorer


Theorem n0el3

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)

Ref Expression
Assertion n0el3
|- ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )

Proof

Step Hyp Ref Expression
1 n0el2
 |-  ( -. (/) e. A <-> dom ( `' _E |` A ) = A )
2 1 biimpi
 |-  ( -. (/) e. A -> dom ( `' _E |` A ) = A )
3 2 qseq1d
 |-  ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = ( A /. ( `' _E |` A ) ) )
4 qsresid
 |-  ( A /. ( `' _E |` A ) ) = ( A /. `' _E )
5 qsid
 |-  ( A /. `' _E ) = A
6 4 5 eqtri
 |-  ( A /. ( `' _E |` A ) ) = A
7 3 6 eqtrdi
 |-  ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )
8 n0eldmqseq
 |-  ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A -> -. (/) e. A )
9 7 8 impbii
 |-  ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )