Step |
Hyp |
Ref |
Expression |
1 |
|
n0el2 |
|- ( -. (/) e. A <-> dom ( `' _E |` A ) = A ) |
2 |
1
|
biimpi |
|- ( -. (/) e. A -> dom ( `' _E |` A ) = A ) |
3 |
2
|
qseq1d |
|- ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = ( A /. ( `' _E |` A ) ) ) |
4 |
|
qsresid |
|- ( A /. ( `' _E |` A ) ) = ( A /. `' _E ) |
5 |
|
qsid |
|- ( A /. `' _E ) = A |
6 |
4 5
|
eqtri |
|- ( A /. ( `' _E |` A ) ) = A |
7 |
3 6
|
eqtrdi |
|- ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |
8 |
|
n0eldmqseq |
|- ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A -> -. (/) e. A ) |
9 |
7 8
|
impbii |
|- ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |