Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | n0el3 | |- ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0elim | |- ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |
|
2 | n0eldmqseq | |- ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A -> -. (/) e. A ) |
|
3 | 1 2 | impbii | |- ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |