Description: Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0elim | |- ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0el2 | |- ( -. (/) e. A <-> dom ( `' _E |` A ) = A ) |
|
| 2 | 1 | biimpi | |- ( -. (/) e. A -> dom ( `' _E |` A ) = A ) |
| 3 | 2 | qseq1d | |- ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = ( A /. ( `' _E |` A ) ) ) |
| 4 | qsresid | |- ( A /. ( `' _E |` A ) ) = ( A /. `' _E ) |
|
| 5 | qsid | |- ( A /. `' _E ) = A |
|
| 6 | 4 5 | eqtri | |- ( A /. ( `' _E |` A ) ) = A |
| 7 | 3 6 | eqtrdi | |- ( -. (/) e. A -> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |