Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | n0el2 | |- ( -. (/) e. A <-> dom ( `' _E |` A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab3 | |- ( A. x e. A E. y y e. x <-> dom { <. x , y >. | ( x e. A /\ y e. x ) } = A ) |
|
2 | n0el | |- ( -. (/) e. A <-> A. x e. A E. y y e. x ) |
|
3 | cnvepres | |- ( `' _E |` A ) = { <. x , y >. | ( x e. A /\ y e. x ) } |
|
4 | 3 | dmeqi | |- dom ( `' _E |` A ) = dom { <. x , y >. | ( x e. A /\ y e. x ) } |
5 | 4 | eqeq1i | |- ( dom ( `' _E |` A ) = A <-> dom { <. x , y >. | ( x e. A /\ y e. x ) } = A ) |
6 | 1 2 5 | 3bitr4i | |- ( -. (/) e. A <-> dom ( `' _E |` A ) = A ) |