Metamath Proof Explorer


Theorem n0el2

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018)

Ref Expression
Assertion n0el2
|- ( -. (/) e. A <-> dom ( `' _E |` A ) = A )

Proof

Step Hyp Ref Expression
1 dmopab3
 |-  ( A. x e. A E. y y e. x <-> dom { <. x , y >. | ( x e. A /\ y e. x ) } = A )
2 n0el
 |-  ( -. (/) e. A <-> A. x e. A E. y y e. x )
3 cnvepres
 |-  ( `' _E |` A ) = { <. x , y >. | ( x e. A /\ y e. x ) }
4 3 dmeqi
 |-  dom ( `' _E |` A ) = dom { <. x , y >. | ( x e. A /\ y e. x ) }
5 4 eqeq1i
 |-  ( dom ( `' _E |` A ) = A <-> dom { <. x , y >. | ( x e. A /\ y e. x ) } = A )
6 1 2 5 3bitr4i
 |-  ( -. (/) e. A <-> dom ( `' _E |` A ) = A )