Metamath Proof Explorer


Theorem n0el2

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018)

Ref Expression
Assertion n0el2 ( ¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 dmopab3 ( ∀ 𝑥𝐴𝑦 𝑦𝑥 ↔ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝑥 ) } = 𝐴 )
2 n0el ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥𝐴𝑦 𝑦𝑥 )
3 cnvepres ( E ↾ 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝑥 ) }
4 3 dmeqi dom ( E ↾ 𝐴 ) = dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝑥 ) }
5 4 eqeq1i ( dom ( E ↾ 𝐴 ) = 𝐴 ↔ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝑥 ) } = 𝐴 )
6 1 2 5 3bitr4i ( ¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴 ) = 𝐴 )