Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0el2 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ 𝑥 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } = 𝐴 ) | |
| 2 | n0el | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 3 | cnvepres | ⊢ ( ◡ E ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } | |
| 4 | 3 | dmeqi | ⊢ dom ( ◡ E ↾ 𝐴 ) = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } |
| 5 | 4 | eqeq1i | ⊢ ( dom ( ◡ E ↾ 𝐴 ) = 𝐴 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } = 𝐴 ) |
| 6 | 1 2 5 | 3bitr4i | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |