Metamath Proof Explorer


Theorem n0el2

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018)

Ref Expression
Assertion n0el2 ¬ A dom E -1 A = A

Proof

Step Hyp Ref Expression
1 dmopab3 x A y y x dom x y | x A y x = A
2 n0el ¬ A x A y y x
3 cnvepres E -1 A = x y | x A y x
4 3 dmeqi dom E -1 A = dom x y | x A y x
5 4 eqeq1i dom E -1 A = A dom x y | x A y x = A
6 1 2 5 3bitr4i ¬ A dom E -1 A = A