Metamath Proof Explorer


Theorem cnvepres

Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018)

Ref Expression
Assertion cnvepres E -1 A = x y | x A y x

Proof

Step Hyp Ref Expression
1 dfres2 E -1 A = x y | x A x E -1 y
2 brcnvep x V x E -1 y y x
3 2 elv x E -1 y y x
4 3 anbi2i x A x E -1 y x A y x
5 4 opabbii x y | x A x E -1 y = x y | x A y x
6 1 5 eqtri E -1 A = x y | x A y x