Metamath Proof Explorer


Theorem n0elim

Description: Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion n0elim ¬AdomE-1A/E-1A=A

Proof

Step Hyp Ref Expression
1 n0el2 ¬AdomE-1A=A
2 1 biimpi ¬AdomE-1A=A
3 2 qseq1d ¬AdomE-1A/E-1A=A/E-1A
4 qsresid A/E-1A=A/E-1
5 qsid A/E-1=A
6 4 5 eqtri A/E-1A=A
7 3 6 eqtrdi ¬AdomE-1A/E-1A=A