Metamath Proof Explorer


Theorem n0el3

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)

Ref Expression
Assertion n0el3 ¬ A dom E -1 A / E -1 A = A

Proof

Step Hyp Ref Expression
1 n0el2 ¬ A dom E -1 A = A
2 1 biimpi ¬ A dom E -1 A = A
3 2 qseq1d ¬ A dom E -1 A / E -1 A = A / E -1 A
4 qsresid A / E -1 A = A / E -1
5 qsid A / E -1 = A
6 4 5 eqtri A / E -1 A = A
7 3 6 eqtrdi ¬ A dom E -1 A / E -1 A = A
8 n0eldmqseq dom E -1 A / E -1 A = A ¬ A
9 7 8 impbii ¬ A dom E -1 A / E -1 A = A