Metamath Proof Explorer


Theorem n0el3

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)

Ref Expression
Assertion n0el3 ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 n0el2 ( ¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴 ) = 𝐴 )
2 1 biimpi ( ¬ ∅ ∈ 𝐴 → dom ( E ↾ 𝐴 ) = 𝐴 )
3 2 qseq1d ( ¬ ∅ ∈ 𝐴 → ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = ( 𝐴 / ( E ↾ 𝐴 ) ) )
4 qsresid ( 𝐴 / ( E ↾ 𝐴 ) ) = ( 𝐴 / E )
5 qsid ( 𝐴 / E ) = 𝐴
6 4 5 eqtri ( 𝐴 / ( E ↾ 𝐴 ) ) = 𝐴
7 3 6 eqtrdi ( ¬ ∅ ∈ 𝐴 → ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )
8 n0eldmqseq ( ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 → ¬ ∅ ∈ 𝐴 )
9 7 8 impbii ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )