Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0el3 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0elim | ⊢ ( ¬ ∅ ∈ 𝐴 → ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) | |
| 2 | n0eldmqseq | ⊢ ( ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 → ¬ ∅ ∈ 𝐴 ) | |
| 3 | 1 2 | impbii | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |