Step |
Hyp |
Ref |
Expression |
1 |
|
n0el2 |
⊢ ( ¬ ∅ ∈ 𝐴 ↔ dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
2 |
1
|
biimpi |
⊢ ( ¬ ∅ ∈ 𝐴 → dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
3 |
2
|
qseq1d |
⊢ ( ¬ ∅ ∈ 𝐴 → ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = ( 𝐴 / ( ◡ E ↾ 𝐴 ) ) ) |
4 |
|
qsresid |
⊢ ( 𝐴 / ( ◡ E ↾ 𝐴 ) ) = ( 𝐴 / ◡ E ) |
5 |
|
qsid |
⊢ ( 𝐴 / ◡ E ) = 𝐴 |
6 |
4 5
|
eqtri |
⊢ ( 𝐴 / ( ◡ E ↾ 𝐴 ) ) = 𝐴 |
7 |
3 6
|
eqtrdi |
⊢ ( ¬ ∅ ∈ 𝐴 → ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |
8 |
|
n0eldmqseq |
⊢ ( ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 → ¬ ∅ ∈ 𝐴 ) |
9 |
7 8
|
impbii |
⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |