Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | qsresid | ⊢ ( 𝐴 / ( 𝑅 ↾ 𝐴 ) ) = ( 𝐴 / 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecres2 | ⊢ ( 𝑣 ∈ 𝐴 → [ 𝑣 ] ( 𝑅 ↾ 𝐴 ) = [ 𝑣 ] 𝑅 ) | |
2 | 1 | eqeq2d | ⊢ ( 𝑣 ∈ 𝐴 → ( 𝑢 = [ 𝑣 ] ( 𝑅 ↾ 𝐴 ) ↔ 𝑢 = [ 𝑣 ] 𝑅 ) ) |
3 | 2 | rexbiia | ⊢ ( ∃ 𝑣 ∈ 𝐴 𝑢 = [ 𝑣 ] ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐴 𝑢 = [ 𝑣 ] 𝑅 ) |
4 | 3 | abbii | ⊢ { 𝑢 ∣ ∃ 𝑣 ∈ 𝐴 𝑢 = [ 𝑣 ] ( 𝑅 ↾ 𝐴 ) } = { 𝑢 ∣ ∃ 𝑣 ∈ 𝐴 𝑢 = [ 𝑣 ] 𝑅 } |
5 | df-qs | ⊢ ( 𝐴 / ( 𝑅 ↾ 𝐴 ) ) = { 𝑢 ∣ ∃ 𝑣 ∈ 𝐴 𝑢 = [ 𝑣 ] ( 𝑅 ↾ 𝐴 ) } | |
6 | df-qs | ⊢ ( 𝐴 / 𝑅 ) = { 𝑢 ∣ ∃ 𝑣 ∈ 𝐴 𝑢 = [ 𝑣 ] 𝑅 } | |
7 | 4 5 6 | 3eqtr4i | ⊢ ( 𝐴 / ( 𝑅 ↾ 𝐴 ) ) = ( 𝐴 / 𝑅 ) |