Metamath Proof Explorer


Theorem qsresid

Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020)

Ref Expression
Assertion qsresid ( 𝐴 / ( 𝑅𝐴 ) ) = ( 𝐴 / 𝑅 )

Proof

Step Hyp Ref Expression
1 ecres2 ( 𝑣𝐴 → [ 𝑣 ] ( 𝑅𝐴 ) = [ 𝑣 ] 𝑅 )
2 1 eqeq2d ( 𝑣𝐴 → ( 𝑢 = [ 𝑣 ] ( 𝑅𝐴 ) ↔ 𝑢 = [ 𝑣 ] 𝑅 ) )
3 2 rexbiia ( ∃ 𝑣𝐴 𝑢 = [ 𝑣 ] ( 𝑅𝐴 ) ↔ ∃ 𝑣𝐴 𝑢 = [ 𝑣 ] 𝑅 )
4 3 abbii { 𝑢 ∣ ∃ 𝑣𝐴 𝑢 = [ 𝑣 ] ( 𝑅𝐴 ) } = { 𝑢 ∣ ∃ 𝑣𝐴 𝑢 = [ 𝑣 ] 𝑅 }
5 df-qs ( 𝐴 / ( 𝑅𝐴 ) ) = { 𝑢 ∣ ∃ 𝑣𝐴 𝑢 = [ 𝑣 ] ( 𝑅𝐴 ) }
6 df-qs ( 𝐴 / 𝑅 ) = { 𝑢 ∣ ∃ 𝑣𝐴 𝑢 = [ 𝑣 ] 𝑅 }
7 4 5 6 3eqtr4i ( 𝐴 / ( 𝑅𝐴 ) ) = ( 𝐴 / 𝑅 )