| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecdmn0 |
⊢ ( 𝑥 ∈ dom 𝑅 ↔ [ 𝑥 ] 𝑅 ≠ ∅ ) |
| 2 |
1
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ≠ ∅ ) |
| 3 |
|
dfss3 |
⊢ ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅 ) |
| 4 |
|
nne |
⊢ ( ¬ [ 𝑥 ] 𝑅 ≠ ∅ ↔ [ 𝑥 ] 𝑅 = ∅ ) |
| 5 |
4
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ [ 𝑥 ] 𝑅 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 6 |
5
|
notbii |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ¬ [ 𝑥 ] 𝑅 ≠ ∅ ↔ ¬ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 7 |
|
dfral2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ≠ ∅ ↔ ¬ ∃ 𝑥 ∈ 𝐴 ¬ [ 𝑥 ] 𝑅 ≠ ∅ ) |
| 8 |
|
0ex |
⊢ ∅ ∈ V |
| 9 |
8
|
elqs |
⊢ ( ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 ∅ = [ 𝑥 ] 𝑅 ) |
| 10 |
|
eqcom |
⊢ ( ∅ = [ 𝑥 ] 𝑅 ↔ [ 𝑥 ] 𝑅 = ∅ ) |
| 11 |
10
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∅ = [ 𝑥 ] 𝑅 ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 12 |
9 11
|
bitri |
⊢ ( ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 13 |
12
|
notbii |
⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 14 |
6 7 13
|
3bitr4ri |
⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ≠ ∅ ) |
| 15 |
2 3 14
|
3bitr4ri |
⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ 𝐴 ⊆ dom 𝑅 ) |