Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | n0elqs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecdmn0 | |
|
2 | 1 | ralbii | |
3 | dfss3 | |
|
4 | nne | |
|
5 | 4 | rexbii | |
6 | 5 | notbii | |
7 | dfral2 | |
|
8 | 0ex | |
|
9 | 8 | elqs | |
10 | eqcom | |
|
11 | 10 | rexbii | |
12 | 9 11 | bitri | |
13 | 12 | notbii | |
14 | 6 7 13 | 3bitr4ri | |
15 | 2 3 14 | 3bitr4ri | |