Step |
Hyp |
Ref |
Expression |
1 |
|
ecdmn0 |
|- ( x e. dom R <-> [ x ] R =/= (/) ) |
2 |
1
|
ralbii |
|- ( A. x e. A x e. dom R <-> A. x e. A [ x ] R =/= (/) ) |
3 |
|
dfss3 |
|- ( A C_ dom R <-> A. x e. A x e. dom R ) |
4 |
|
nne |
|- ( -. [ x ] R =/= (/) <-> [ x ] R = (/) ) |
5 |
4
|
rexbii |
|- ( E. x e. A -. [ x ] R =/= (/) <-> E. x e. A [ x ] R = (/) ) |
6 |
5
|
notbii |
|- ( -. E. x e. A -. [ x ] R =/= (/) <-> -. E. x e. A [ x ] R = (/) ) |
7 |
|
dfral2 |
|- ( A. x e. A [ x ] R =/= (/) <-> -. E. x e. A -. [ x ] R =/= (/) ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
8
|
elqs |
|- ( (/) e. ( A /. R ) <-> E. x e. A (/) = [ x ] R ) |
10 |
|
eqcom |
|- ( (/) = [ x ] R <-> [ x ] R = (/) ) |
11 |
10
|
rexbii |
|- ( E. x e. A (/) = [ x ] R <-> E. x e. A [ x ] R = (/) ) |
12 |
9 11
|
bitri |
|- ( (/) e. ( A /. R ) <-> E. x e. A [ x ] R = (/) ) |
13 |
12
|
notbii |
|- ( -. (/) e. ( A /. R ) <-> -. E. x e. A [ x ] R = (/) ) |
14 |
6 7 13
|
3bitr4ri |
|- ( -. (/) e. ( A /. R ) <-> A. x e. A [ x ] R =/= (/) ) |
15 |
2 3 14
|
3bitr4ri |
|- ( -. (/) e. ( A /. R ) <-> A C_ dom R ) |