Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0elqs2 | |- ( -. (/) e. ( A /. R ) <-> dom ( R |` A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0elqs | |- ( -. (/) e. ( A /. R ) <-> A C_ dom R ) |
|
| 2 | ssdmres | |- ( A C_ dom R <-> dom ( R |` A ) = A ) |
|
| 3 | 1 2 | bitri | |- ( -. (/) e. ( A /. R ) <-> dom ( R |` A ) = A ) |