Metamath Proof Explorer


Theorem ecex2

Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019)

Ref Expression
Assertion ecex2
|- ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. _V ) )

Proof

Step Hyp Ref Expression
1 ecexg
 |-  ( ( R |` A ) e. V -> [ B ] ( R |` A ) e. _V )
2 ecres2
 |-  ( B e. A -> [ B ] ( R |` A ) = [ B ] R )
3 2 eleq1d
 |-  ( B e. A -> ( [ B ] ( R |` A ) e. _V <-> [ B ] R e. _V ) )
4 1 3 syl5ibcom
 |-  ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. _V ) )