Metamath Proof Explorer


Theorem ecex2

Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019)

Ref Expression
Assertion ecex2 ( ( 𝑅𝐴 ) ∈ 𝑉 → ( 𝐵𝐴 → [ 𝐵 ] 𝑅 ∈ V ) )

Proof

Step Hyp Ref Expression
1 ecexg ( ( 𝑅𝐴 ) ∈ 𝑉 → [ 𝐵 ] ( 𝑅𝐴 ) ∈ V )
2 ecres2 ( 𝐵𝐴 → [ 𝐵 ] ( 𝑅𝐴 ) = [ 𝐵 ] 𝑅 )
3 2 eleq1d ( 𝐵𝐴 → ( [ 𝐵 ] ( 𝑅𝐴 ) ∈ V ↔ [ 𝐵 ] 𝑅 ∈ V ) )
4 1 3 syl5ibcom ( ( 𝑅𝐴 ) ∈ 𝑉 → ( 𝐵𝐴 → [ 𝐵 ] 𝑅 ∈ V ) )