Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ecex2 | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecexg | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∈ V ) | |
2 | ecres2 | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) = [ 𝐵 ] 𝑅 ) | |
3 | 2 | eleq1d | ⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∈ V ↔ [ 𝐵 ] 𝑅 ∈ V ) ) |
4 | 1 3 | syl5ibcom | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ V ) ) |