Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 25-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | n0elqs2 | ⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ dom ( 𝑅 ↾ 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0elqs | ⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ 𝐴 ⊆ dom 𝑅 ) | |
2 | ssdmres | ⊢ ( 𝐴 ⊆ dom 𝑅 ↔ dom ( 𝑅 ↾ 𝐴 ) = 𝐴 ) | |
3 | 1 2 | bitri | ⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ dom ( 𝑅 ↾ 𝐴 ) = 𝐴 ) |