Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
qsresid
Next ⟩
n0elqs
Metamath Proof Explorer
Ascii
Unicode
Theorem
qsresid
Description:
Simplification of a special quotient set.
(Contributed by
Peter Mazsa
, 2-Sep-2020)
Ref
Expression
Assertion
qsresid
⊢
A
/
R
↾
A
=
A
/
R
Proof
Step
Hyp
Ref
Expression
1
ecres2
⊢
v
∈
A
→
v
R
↾
A
=
v
R
2
1
eqeq2d
⊢
v
∈
A
→
u
=
v
R
↾
A
↔
u
=
v
R
3
2
rexbiia
⊢
∃
v
∈
A
u
=
v
R
↾
A
↔
∃
v
∈
A
u
=
v
R
4
3
abbii
⊢
u
|
∃
v
∈
A
u
=
v
R
↾
A
=
u
|
∃
v
∈
A
u
=
v
R
5
df-qs
⊢
A
/
R
↾
A
=
u
|
∃
v
∈
A
u
=
v
R
↾
A
6
df-qs
⊢
A
/
R
=
u
|
∃
v
∈
A
u
=
v
R
7
4
5
6
3eqtr4i
⊢
A
/
R
↾
A
=
A
/
R