Metamath Proof Explorer


Theorem qsresid

Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020)

Ref Expression
Assertion qsresid
|- ( A /. ( R |` A ) ) = ( A /. R )

Proof

Step Hyp Ref Expression
1 ecres2
 |-  ( v e. A -> [ v ] ( R |` A ) = [ v ] R )
2 1 eqeq2d
 |-  ( v e. A -> ( u = [ v ] ( R |` A ) <-> u = [ v ] R ) )
3 2 rexbiia
 |-  ( E. v e. A u = [ v ] ( R |` A ) <-> E. v e. A u = [ v ] R )
4 3 abbii
 |-  { u | E. v e. A u = [ v ] ( R |` A ) } = { u | E. v e. A u = [ v ] R }
5 df-qs
 |-  ( A /. ( R |` A ) ) = { u | E. v e. A u = [ v ] ( R |` A ) }
6 df-qs
 |-  ( A /. R ) = { u | E. v e. A u = [ v ] R }
7 4 5 6 3eqtr4i
 |-  ( A /. ( R |` A ) ) = ( A /. R )