Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsresid | |- ( A /. ( R |` A ) ) = ( A /. R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecres2 | |- ( v e. A -> [ v ] ( R |` A ) = [ v ] R ) |
|
| 2 | 1 | eqeq2d | |- ( v e. A -> ( u = [ v ] ( R |` A ) <-> u = [ v ] R ) ) |
| 3 | 2 | rexbiia | |- ( E. v e. A u = [ v ] ( R |` A ) <-> E. v e. A u = [ v ] R ) |
| 4 | 3 | abbii | |- { u | E. v e. A u = [ v ] ( R |` A ) } = { u | E. v e. A u = [ v ] R } |
| 5 | df-qs | |- ( A /. ( R |` A ) ) = { u | E. v e. A u = [ v ] ( R |` A ) } |
|
| 6 | df-qs | |- ( A /. R ) = { u | E. v e. A u = [ v ] R } |
|
| 7 | 4 5 6 | 3eqtr4i | |- ( A /. ( R |` A ) ) = ( A /. R ) |