Metamath Proof Explorer


Theorem cnvepresdmqss

Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion cnvepresdmqss ( 𝐴𝑉 → ( ( E ↾ 𝐴 ) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 cnvepresex ( 𝐴𝑉 → ( E ↾ 𝐴 ) ∈ V )
2 brdmqss ( ( 𝐴𝑉 ∧ ( E ↾ 𝐴 ) ∈ V ) → ( ( E ↾ 𝐴 ) DomainQss 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 ) )
3 1 2 mpdan ( 𝐴𝑉 → ( ( E ↾ 𝐴 ) DomainQss 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 ) )
4 n0el3 ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( E ↾ 𝐴 ) / ( E ↾ 𝐴 ) ) = 𝐴 )
5 3 4 bitr4di ( 𝐴𝑉 → ( ( E ↾ 𝐴 ) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) )