Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvepresdmqss | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ◡ E ↾ 𝐴 ) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ E ↾ 𝐴 ) ∈ V ) | |
2 | brdmqss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ◡ E ↾ 𝐴 ) ∈ V ) → ( ( ◡ E ↾ 𝐴 ) DomainQss 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) | |
3 | 1 2 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ◡ E ↾ 𝐴 ) DomainQss 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) |
4 | n0el3 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) | |
5 | 3 4 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ◡ E ↾ 𝐴 ) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) ) |