Metamath Proof Explorer


Theorem cnvepresdmqss

Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion cnvepresdmqss A V E -1 A DomainQss A ¬ A

Proof

Step Hyp Ref Expression
1 cnvepresex A V E -1 A V
2 brdmqss A V E -1 A V E -1 A DomainQss A dom E -1 A / E -1 A = A
3 1 2 mpdan A V E -1 A DomainQss A dom E -1 A / E -1 A = A
4 n0el3 ¬ A dom E -1 A / E -1 A = A
5 3 4 bitr4di A V E -1 A DomainQss A ¬ A