Metamath Proof Explorer


Theorem cnvepresdmqss

Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion cnvepresdmqss
|- ( A e. V -> ( ( `' _E |` A ) DomainQss A <-> -. (/) e. A ) )

Proof

Step Hyp Ref Expression
1 cnvepresex
 |-  ( A e. V -> ( `' _E |` A ) e. _V )
2 brdmqss
 |-  ( ( A e. V /\ ( `' _E |` A ) e. _V ) -> ( ( `' _E |` A ) DomainQss A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) )
3 1 2 mpdan
 |-  ( A e. V -> ( ( `' _E |` A ) DomainQss A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) )
4 n0el3
 |-  ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A )
5 3 4 bitr4di
 |-  ( A e. V -> ( ( `' _E |` A ) DomainQss A <-> -. (/) e. A ) )