Metamath Proof Explorer


Theorem n0eldmqseq

Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018)

Ref Expression
Assertion n0eldmqseq ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ¬ ∅ ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 n0eldmqs ¬ ∅ ∈ ( dom 𝑅 / 𝑅 )
2 eleq2 ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ( ∅ ∈ ( dom 𝑅 / 𝑅 ) ↔ ∅ ∈ 𝐴 ) )
3 1 2 mtbii ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ¬ ∅ ∈ 𝐴 )