Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | n0eldmqseq | |- ( ( dom R /. R ) = A -> -. (/) e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0eldmqs | |- -. (/) e. ( dom R /. R ) |
|
2 | eleq2 | |- ( ( dom R /. R ) = A -> ( (/) e. ( dom R /. R ) <-> (/) e. A ) ) |
|
3 | 1 2 | mtbii | |- ( ( dom R /. R ) = A -> -. (/) e. A ) |