Metamath Proof Explorer


Theorem n0eldmqs

Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018)

Ref Expression
Assertion n0eldmqs ¬ ∅ ∈ ( dom 𝑅 / 𝑅 )

Proof

Step Hyp Ref Expression
1 ssid dom 𝑅 ⊆ dom 𝑅
2 n0elqs ( ¬ ∅ ∈ ( dom 𝑅 / 𝑅 ) ↔ dom 𝑅 ⊆ dom 𝑅 )
3 1 2 mpbir ¬ ∅ ∈ ( dom 𝑅 / 𝑅 )