Metamath Proof Explorer


Theorem n0eldmqs

Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018)

Ref Expression
Assertion n0eldmqs ¬ dom R / R

Proof

Step Hyp Ref Expression
1 ssid dom R dom R
2 n0elqs ¬ dom R / R dom R dom R
3 1 2 mpbir ¬ dom R / R