Metamath Proof Explorer


Theorem qsid

Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion qsid A / E -1 = A

Proof

Step Hyp Ref Expression
1 vex x V
2 1 ecid x E -1 = x
3 2 eqeq2i y = x E -1 y = x
4 equcom y = x x = y
5 3 4 bitri y = x E -1 x = y
6 5 rexbii x A y = x E -1 x A x = y
7 vex y V
8 7 elqs y A / E -1 x A y = x E -1
9 risset y A x A x = y
10 6 8 9 3bitr4i y A / E -1 y A
11 10 eqriv A / E -1 = A