Metamath Proof Explorer


Theorem unidmqs

Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018)

Ref Expression
Assertion unidmqs
|- ( R e. V -> ( Rel R -> U. ( dom R /. R ) = ran R ) )

Proof

Step Hyp Ref Expression
1 resexg
 |-  ( R e. V -> ( R |` dom R ) e. _V )
2 rnresequniqs
 |-  ( ( R |` dom R ) e. _V -> ran ( R |` dom R ) = U. ( dom R /. R ) )
3 1 2 syl
 |-  ( R e. V -> ran ( R |` dom R ) = U. ( dom R /. R ) )
4 resdm
 |-  ( Rel R -> ( R |` dom R ) = R )
5 4 rneqd
 |-  ( Rel R -> ran ( R |` dom R ) = ran R )
6 3 5 sylan9req
 |-  ( ( R e. V /\ Rel R ) -> U. ( dom R /. R ) = ran R )
7 6 ex
 |-  ( R e. V -> ( Rel R -> U. ( dom R /. R ) = ran R ) )