Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unidmqs | |- ( R e. V -> ( Rel R -> U. ( dom R /. R ) = ran R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg | |- ( R e. V -> ( R |` dom R ) e. _V ) |
|
| 2 | rnresequniqs | |- ( ( R |` dom R ) e. _V -> ran ( R |` dom R ) = U. ( dom R /. R ) ) |
|
| 3 | 1 2 | syl | |- ( R e. V -> ran ( R |` dom R ) = U. ( dom R /. R ) ) |
| 4 | resdm | |- ( Rel R -> ( R |` dom R ) = R ) |
|
| 5 | 4 | rneqd | |- ( Rel R -> ran ( R |` dom R ) = ran R ) |
| 6 | 3 5 | sylan9req | |- ( ( R e. V /\ Rel R ) -> U. ( dom R /. R ) = ran R ) |
| 7 | 6 | ex | |- ( R e. V -> ( Rel R -> U. ( dom R /. R ) = ran R ) ) |