Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | unidmqs | ⊢ ( 𝑅 ∈ 𝑉 → ( Rel 𝑅 → ∪ ( dom 𝑅 / 𝑅 ) = ran 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↾ dom 𝑅 ) ∈ V ) | |
2 | rnresequniqs | ⊢ ( ( 𝑅 ↾ dom 𝑅 ) ∈ V → ran ( 𝑅 ↾ dom 𝑅 ) = ∪ ( dom 𝑅 / 𝑅 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ran ( 𝑅 ↾ dom 𝑅 ) = ∪ ( dom 𝑅 / 𝑅 ) ) |
4 | resdm | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) | |
5 | 4 | rneqd | ⊢ ( Rel 𝑅 → ran ( 𝑅 ↾ dom 𝑅 ) = ran 𝑅 ) |
6 | 3 5 | sylan9req | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → ∪ ( dom 𝑅 / 𝑅 ) = ran 𝑅 ) |
7 | 6 | ex | ⊢ ( 𝑅 ∈ 𝑉 → ( Rel 𝑅 → ∪ ( dom 𝑅 / 𝑅 ) = ran 𝑅 ) ) |