Metamath Proof Explorer


Theorem unidmqs

Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018)

Ref Expression
Assertion unidmqs ( 𝑅𝑉 → ( Rel 𝑅 ( dom 𝑅 / 𝑅 ) = ran 𝑅 ) )

Proof

Step Hyp Ref Expression
1 resexg ( 𝑅𝑉 → ( 𝑅 ↾ dom 𝑅 ) ∈ V )
2 rnresequniqs ( ( 𝑅 ↾ dom 𝑅 ) ∈ V → ran ( 𝑅 ↾ dom 𝑅 ) = ( dom 𝑅 / 𝑅 ) )
3 1 2 syl ( 𝑅𝑉 → ran ( 𝑅 ↾ dom 𝑅 ) = ( dom 𝑅 / 𝑅 ) )
4 resdm ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 )
5 4 rneqd ( Rel 𝑅 → ran ( 𝑅 ↾ dom 𝑅 ) = ran 𝑅 )
6 3 5 sylan9req ( ( 𝑅𝑉 ∧ Rel 𝑅 ) → ( dom 𝑅 / 𝑅 ) = ran 𝑅 )
7 6 ex ( 𝑅𝑉 → ( Rel 𝑅 ( dom 𝑅 / 𝑅 ) = ran 𝑅 ) )