Metamath Proof Explorer


Theorem dfom4

Description: A simplification of df-om assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)

Ref Expression
Assertion dfom4 ω=x|yLimyxy

Proof

Step Hyp Ref Expression
1 elom3 xωyLimyxy
2 1 eqabi ω=x|yLimyxy