Metamath Proof Explorer


Theorem elom3

Description: A simplification of elom assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)

Ref Expression
Assertion elom3 AωxLimxAx

Proof

Step Hyp Ref Expression
1 elom AωAOnxLimxAx
2 limom Limω
3 omex ωV
4 limeq x=ωLimxLimω
5 eleq2 x=ωAxAω
6 4 5 imbi12d x=ωLimxAxLimωAω
7 3 6 spcv xLimxAxLimωAω
8 2 7 mpi xLimxAxAω
9 nnon AωAOn
10 8 9 syl xLimxAxAOn
11 10 pm4.71ri xLimxAxAOnxLimxAx
12 1 11 bitr4i AωxLimxAx