Metamath Proof Explorer


Theorem dford5

Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021)

Ref Expression
Assertion dford5 OrdAAOnTrA

Proof

Step Hyp Ref Expression
1 ordsson OrdAAOn
2 ordtr OrdATrA
3 1 2 jca OrdAAOnTrA
4 epweon EWeOn
5 wess AOnEWeOnEWeA
6 4 5 mpi AOnEWeA
7 df-ord OrdATrAEWeA
8 7 biimpri TrAEWeAOrdA
9 8 ancoms EWeATrAOrdA
10 6 9 sylan AOnTrAOrdA
11 3 10 impbii OrdAAOnTrA