Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dford5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsson | |
|
2 | ordtr | |
|
3 | 1 2 | jca | |
4 | epweon | |
|
5 | wess | |
|
6 | 4 5 | mpi | |
7 | df-ord | |
|
8 | 7 | biimpri | |
9 | 8 | ancoms | |
10 | 6 9 | sylan | |
11 | 3 10 | impbii | |