Metamath Proof Explorer


Theorem dford5

Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021)

Ref Expression
Assertion dford5 Ord A A On Tr A

Proof

Step Hyp Ref Expression
1 ordsson Ord A A On
2 ordtr Ord A Tr A
3 1 2 jca Ord A A On Tr A
4 epweon E We On
5 wess A On E We On E We A
6 4 5 mpi A On E We A
7 df-ord Ord A Tr A E We A
8 7 biimpri Tr A E We A Ord A
9 8 ancoms E We A Tr A Ord A
10 6 9 sylan A On Tr A Ord A
11 3 10 impbii Ord A A On Tr A