Metamath Proof Explorer


Theorem dfrab2

Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003) (Proof shortened by BJ, 22-Apr-2019)

Ref Expression
Assertion dfrab2 xA|φ=x|φA

Proof

Step Hyp Ref Expression
1 dfrab3 xA|φ=Ax|φ
2 incom Ax|φ=x|φA
3 1 2 eqtri xA|φ=x|φA