Metamath Proof Explorer


Theorem dfrn3

Description: Alternate definition of range. Definition 6.5(2) of TakeutiZaring p. 24. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfrn3 ranA=y|xxyA

Proof

Step Hyp Ref Expression
1 dfrn2 ranA=y|xxAy
2 df-br xAyxyA
3 2 exbii xxAyxxyA
4 3 abbii y|xxAy=y|xxyA
5 1 4 eqtri ranA=y|xxyA