Metamath Proof Explorer


Theorem elrn2g

Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion elrn2g AVAranBxxAB

Proof

Step Hyp Ref Expression
1 opeq2 y=Axy=xA
2 1 eleq1d y=AxyBxAB
3 2 exbidv y=AxxyBxxAB
4 dfrn3 ranB=y|xxyB
5 3 4 elab2g AVAranBxxAB