Metamath Proof Explorer


Theorem dfrn6

Description: Alternate definition of range. (Contributed by Peter Mazsa, 1-Aug-2018)

Ref Expression
Assertion dfrn6 ranR=x|xR-1

Proof

Step Hyp Ref Expression
1 df-rn ranR=domR-1
2 dfdm6 domR-1=x|xR-1
3 1 2 eqtri ranR=x|xR-1