Metamath Proof Explorer


Theorem dfrn6

Description: Alternate definition of range. (Contributed by Peter Mazsa, 1-Aug-2018)

Ref Expression
Assertion dfrn6 ran 𝑅 = { 𝑥 ∣ [ 𝑥 ] 𝑅 ≠ ∅ }

Proof

Step Hyp Ref Expression
1 df-rn ran 𝑅 = dom 𝑅
2 dfdm6 dom 𝑅 = { 𝑥 ∣ [ 𝑥 ] 𝑅 ≠ ∅ }
3 1 2 eqtri ran 𝑅 = { 𝑥 ∣ [ 𝑥 ] 𝑅 ≠ ∅ }