Metamath Proof Explorer


Theorem rncnvepres

Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018) (Revised by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion rncnvepres ran ( E ↾ 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝑦𝑥 ) }
2 cnvepres ( E ↾ 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝑥 ) }
3 2 rneqi ran ( E ↾ 𝐴 ) = ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝑥 ) }
4 dfuni2 𝐴 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝑥 }
5 df-rex ( ∃ 𝑥𝐴 𝑦𝑥 ↔ ∃ 𝑥 ( 𝑥𝐴𝑦𝑥 ) )
6 5 abbii { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝑥 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝑦𝑥 ) }
7 4 6 eqtri 𝐴 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝑦𝑥 ) }
8 1 3 7 3eqtr4i ran ( E ↾ 𝐴 ) = 𝐴