Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018) (Revised by Peter Mazsa, 26-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | rncnvepres | ⊢ ran ( ◡ E ↾ 𝐴 ) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab | ⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } | |
2 | cnvepres | ⊢ ( ◡ E ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } | |
3 | 2 | rneqi | ⊢ ran ( ◡ E ↾ 𝐴 ) = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } |
4 | dfuni2 | ⊢ ∪ 𝐴 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 } | |
5 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) | |
6 | 5 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } |
7 | 4 6 | eqtri | ⊢ ∪ 𝐴 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) } |
8 | 1 3 7 | 3eqtr4i | ⊢ ran ( ◡ E ↾ 𝐴 ) = ∪ 𝐴 |