Metamath Proof Explorer


Theorem rncnvepres

Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018) (Revised by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion rncnvepres ran E -1 A = A

Proof

Step Hyp Ref Expression
1 rnopab ran x y | x A y x = y | x x A y x
2 cnvepres E -1 A = x y | x A y x
3 2 rneqi ran E -1 A = ran x y | x A y x
4 dfuni2 A = y | x A y x
5 df-rex x A y x x x A y x
6 5 abbii y | x A y x = y | x x A y x
7 4 6 eqtri A = y | x x A y x
8 1 3 7 3eqtr4i ran E -1 A = A