Metamath Proof Explorer


Theorem dmecd

Description: Equality of the coset of B and the coset of C implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm ). (Contributed by Peter Mazsa, 9-Oct-2018)

Ref Expression
Hypotheses dmecd.1 φ dom R = A
dmecd.2 φ B R = C R
Assertion dmecd φ B A C A

Proof

Step Hyp Ref Expression
1 dmecd.1 φ dom R = A
2 dmecd.2 φ B R = C R
3 2 neeq1d φ B R C R
4 ecdmn0 B dom R B R
5 ecdmn0 C dom R C R
6 3 4 5 3bitr4g φ B dom R C dom R
7 1 eleq2d φ B dom R B A
8 1 eleq2d φ C dom R C A
9 6 7 8 3bitr3d φ B A C A