Metamath Proof Explorer


Theorem dmecd

Description: Equality of the coset of B and the coset of C implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm ). (Contributed by Peter Mazsa, 9-Oct-2018)

Ref Expression
Hypotheses dmecd.1 ( 𝜑 → dom 𝑅 = 𝐴 )
dmecd.2 ( 𝜑 → [ 𝐵 ] 𝑅 = [ 𝐶 ] 𝑅 )
Assertion dmecd ( 𝜑 → ( 𝐵𝐴𝐶𝐴 ) )

Proof

Step Hyp Ref Expression
1 dmecd.1 ( 𝜑 → dom 𝑅 = 𝐴 )
2 dmecd.2 ( 𝜑 → [ 𝐵 ] 𝑅 = [ 𝐶 ] 𝑅 )
3 2 neeq1d ( 𝜑 → ( [ 𝐵 ] 𝑅 ≠ ∅ ↔ [ 𝐶 ] 𝑅 ≠ ∅ ) )
4 ecdmn0 ( 𝐵 ∈ dom 𝑅 ↔ [ 𝐵 ] 𝑅 ≠ ∅ )
5 ecdmn0 ( 𝐶 ∈ dom 𝑅 ↔ [ 𝐶 ] 𝑅 ≠ ∅ )
6 3 4 5 3bitr4g ( 𝜑 → ( 𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅 ) )
7 1 eleq2d ( 𝜑 → ( 𝐵 ∈ dom 𝑅𝐵𝐴 ) )
8 1 eleq2d ( 𝜑 → ( 𝐶 ∈ dom 𝑅𝐶𝐴 ) )
9 6 7 8 3bitr3d ( 𝜑 → ( 𝐵𝐴𝐶𝐴 ) )