Metamath Proof Explorer


Theorem dfsymrels3

Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021)

Ref Expression
Assertion dfsymrels3 SymRels = r Rels | x y x r y y r x

Proof

Step Hyp Ref Expression
1 dfsymrels2 SymRels = r Rels | r -1 r
2 cnvsym r -1 r x y x r y y r x
3 1 2 rabbieq SymRels = r Rels | x y x r y y r x