Metamath Proof Explorer


Theorem dfxrn2

Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022)

Ref Expression
Assertion dfxrn2 RS=xyu|uRxuSy-1

Proof

Step Hyp Ref Expression
1 xrnrel RelRS
2 dfrel4v RelRSRS=uz|uRSz
3 1 2 mpbi RS=uz|uRSz
4 breq2 z=xyuRSzuRSxy
5 brxrn2 uVuRSzxyz=xyuRxuSy
6 5 elv uRSzxyz=xyuRxuSy
7 brxrn uVxVyVuRSxyuRxuSy
8 7 el3v uRSxyuRxuSy
9 8 anbi2i z=xyuRSxyz=xyuRxuSy
10 3anass z=xyuRxuSyz=xyuRxuSy
11 9 10 bitr4i z=xyuRSxyz=xyuRxuSy
12 11 2exbii xyz=xyuRSxyxyz=xyuRxuSy
13 4 copsex2gb xyz=xyuRSxyzV×VuRSz
14 6 12 13 3bitr2i uRSzzV×VuRSz
15 14 simplbi uRSzzV×V
16 4 15 cnvoprab xyu|uRSxy-1=uz|uRSz
17 8 oprabbii xyu|uRSxy=xyu|uRxuSy
18 17 cnveqi xyu|uRSxy-1=xyu|uRxuSy-1
19 3 16 18 3eqtr2i RS=xyu|uRxuSy-1