Metamath Proof Explorer


Theorem difeq12i

Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004)

Ref Expression
Hypotheses difeq1i.1 A=B
difeq12i.2 C=D
Assertion difeq12i AC=BD

Proof

Step Hyp Ref Expression
1 difeq1i.1 A=B
2 difeq12i.2 C=D
3 1 difeq1i AC=BC
4 2 difeq2i BC=BD
5 3 4 eqtri AC=BD