Metamath Proof Explorer


Theorem difeq1d

Description: Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002)

Ref Expression
Hypothesis difeq1d.1 φA=B
Assertion difeq1d φAC=BC

Proof

Step Hyp Ref Expression
1 difeq1d.1 φA=B
2 difeq1 A=BAC=BC
3 1 2 syl φAC=BC