Metamath Proof Explorer


Theorem difprsn2

Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017)

Ref Expression
Assertion difprsn2 ABABB=A

Proof

Step Hyp Ref Expression
1 prcom AB=BA
2 1 difeq1i ABB=BAB
3 necom ABBA
4 difprsn1 BABAB=A
5 3 4 sylbi ABBAB=A
6 2 5 eqtrid ABABB=A